
Image Recognition 
Instructor: Vision Wang

Email: xinwang35314@gmail.com



• Definition and Applications

• Model

• Practice using Python

Image Recognition



Definition

• Image recognition is a term for computer technologies that can recognize 
certain people, animals, objects or other targeted subjects through the use of 
algorithms and machine learning concepts.



Applications

Self driving car, known as a 
robotic car, is a vehicle that is 
able to sense its environment 
and moving safely with little or 
no human input.



Medical Diagnostic imaging is a 
method of looking inside the 
body to help determine the 
cause of an injury or an illness, 
and to confirm a diagnosis.



Model
• Convolutional Neural Networks (CNNs) is the most popular neural network 
model being used for image classification problem. 
• In technical terms, convolutional neural networks make the image processing 
computationally manageable through filtering the connections by proximity.

Modeling Step 1: Extract pixel features from an image

An image is actually made of “pixels”. Each 
pixel is represented by a number or a set of 
numbers — and the range of these numbers 
is called the color depth (or bit depth).



Model

Modeling Step 2: Train the model to be able to categorize images 



Model

Modeling Step 3: Recognize a new image from which category



Building the CNN – There are three crucial parts in whole CNN stucture.
1. Convolutional – Extract features from the input image
2. Polling – Reduce the dimensionality of each feature map but retain the most 

import information.
3. Flattening – Convert the matrix into a linear array to input it into the nods of 

the neural network. 

CNN Model



Practice using Python

• The Keras library in Python makes it pretty simple to build a CNN.
• Keras is an open-source neural-network library written in Python. It is designed 
to enable fast experimentation with deep neural networks 

Import all the modules

>>>from keras.preprocessing.image import load_img
>>>from keras.preprocessing.image import img_to_array
>>>from keras.applications.vgg16 import preprocess_input
>>>from keras.applications.vgg16 import decode_predictions
>>>from keras.applications.vgg16 import VGG16

Function load_img() in keras.preprocessing.image loads and resizes the image the 
to the required size of 224*224 pixels (the input for the 1st convolutional layer is 
of fixed size 224*224).

>>>image = load_img(file, target_size=(224, 224))

Then we are going to convert the pixels to a Numpy array, using function 
img_to_array() in keras

>>>image = img_to_array(image)



The network expects one or more images as input; that means the input array will 
need to be 4-dimensional: samples, rows, columns, and channels. As we only have 
1 sample here, the first number should be 1. Therefore, we shall have a (1, 224, 
224, 3) shape array.

>>>image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))

The image pixels need to be prepared by subtracting the mean RGB value from 
each pixel using preprocess_input() from keras.

>>>image = preprocess_input(image)

Predict the probability of the target image belonging to each of the targets across 
the 1000 known object types (as pre-trained). The result is a flatten matrix – an 
array.

>>>y = VGG16().predict(image)

The model has made its prediction. The next step is to interpret the result in a more 
comprehensive way. The Keras’ function decode_predictions() serves the purpose, 
producing a list with class and its corresponding probability.

>>>label = decode_predictions(y)
>>>label = label[0][0]

Display the highest score in a more fashionable way,

>>>print('%s (%.2f%%)' % (label[1], label[2]*100))


